#### Sentence Examples

• Although many pseudo-symmetric twins are transformable into the simpler form, yet, in some cases, a true polymorph results, the change being indicated, as before, by alterations in scalar (as well as vector) properties.
• If we put qo= Sq' - Vq', then qo is called the conjugate of q', and the scalar q'qo = qoq' is called the norm of q' and written Nq'.
• This has a reciprocal Q -1= p-r = qq-1 - wp1 rq1, and a conjugate KQ (such that K[QQ'] = KQ'KQ, K[KQ] = Q) given by KQ = Kq-}-rlKp+wKr; the product QQ' of Q and Q' is app'+nqq'+w(pr'+rq'); the quasi-vector RI - K) Q is Combebiac's linear element and may be regarded as a point on a line; the quasi-scalar (in a different sense from the rest of this article) 2(1+K)Q is Combebiac's scalar (Sp+Sq)+Combebiac's plane.
• The fundamental character of energy in material systems here comes into view; if there were any other independent scalar entity, besides mass and energy, that pervaded them with relations of equivalence, we should expect the existence of yet another set of qualities analogous to those connected with temperature.
• The plane is of vector magnitude ZVq, its equation is ZSpq=Sr, and its expression is the bi-quaternion nVq+wSr; the point is of scalar magnitude 4Sq, and its position vector is [3, where 1Vf3q=Vr (or what is the same, fi = [Vr+q.