Sentence Examples


  • If the form, sometimes termed a quantic, be equated to zero the n+I coefficients are equivalent to but n, since one can be made unity by division and the equation is to be regarded as one for the determination of the ratio of the variables.
  • If the variables of the quantic f(x i, x 2) be subjected to the linear transformation x1 = a12Et2, x2 = a21E1+a2252, E1, being new variables replacing x1, x 2 and the coefficients an, all, a 21, a22, termed the coefficients of substitution (or of transformation), being constants, we arrive at a transformed quantic f% 1tn n n-1 n-2 52) = a S +(1)a11 E 2 + (2)a2E1 E 2 +��� in the new variables which is of the same order as the original quantic; the new coefficients a, a, a'...a are linear functions 0 1 2 n of the original coefficients, and also linear functions of products, of the coefficients of substitution, of the nth degree.
  • In the theory of forms we seek functions of the coefficients and variables of the original quantic which, save as to a power of the modulus of transformation, are equal to the like functions of the coefficients and variables of the transformed quantic. We may have such a function which does not involve the variables, viz.
  • F(a ' a ' a, ...a) =r A F(ao, a1, a2,���an), 0 1 2 n the function F(ao, al, a2,...an) is then said to be an invariant of the quantic gud linear transformation.
  • X i, x 2) is said to be a covariant of the quantic. The expression " invariantive forms " includes both invariants and covariants, and frequently also other analogous forms which will be met with.

How would you define quantic? Add your definition here.

comments powered by Disqus