Sentence Examples

  • Under the general heading "Geometry" occur the subheadings "Foundations," with the topics principles of geometry, non-Euclidean geometries, hyperspace, methods of analytical geometry; "Elementary Geometry," with the topics planimetry, stereometry, trigonometry, descriptive geometry; "Geometry of Conics and Quadrics," with the implied topics; "Algebraic Curves and Surfaces of Degree higher than the Second," with the implied topics; "Transformations and General Methods for Algebraic Configurations," with the topics collineation, duality, transformations, correspondence, groups of points on algebraic curves and surfaces, genus of curves and surfaces, enumerative geometry, connexes, complexes, congruences, higher elements in space, algebraic configurations in hyperspace; "Infinitesimal Geometry: applications of Differential and Integral Calculus to Geometry," with the topics kinematic geometry, curvature, rectification and quadrature, special transcendental curves and surfaces; "Differential Geometry: applications of Differential Equations to Geometry," with the topics curves on surfaces, minimal surfaces, surfaces determined by differential properties, conformal and other representation of surfaces on others, deformation of surfaces, orthogonal and isothermic surfaces.
  • For the subjects under this heading see the articles CONIC SECTIONS; CIRCLE; CURVE; GEOMETRICAL CONTINUITY; GEOMETRY, Axioms of; GEOMETRY, Euclidean; GEOMETRY, Projective; GEOMETRY, Analytical; GEOMETRY, Line; KNOTS, MATHEMATICAL THEORY OF; MENSURATION; MODELS; PROJECTION; Surface; Trigonometry.
  • At the same time, it delights the pure theorist by the simplicity of the logic with which the fundamental theorems may be established, and by the elegance of its mathematical operations, insomuch that hydrostatics may be considered as the Euclidean pure geometry of mechanical science.
  • Reference should be made to the article Geometry: Euclidean, for a detailed summary of the Euclidean treatment, and the elementary properties of the circle.
  • The problem of finding a square equal in area to a given circle, like all problems, may be increased in difficulty by the imposition of restrictions; consequently under the designation there may be embraced quite a variety of geometrical problems. It has to be noted, however, that, when the " squaring " of the circle is especially spoken of, it is almost always tacitly assumed that the restrictions are those of the Euclidean geometry.

How would you define Euclidean? Add your definition here.

comments powered by Disqus